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ABSTRACT: In this study, we investigate the response of tropical cyclones (TCs) to climate change by using the Princeton

environment-dependent probabilistic tropical cyclone (PepC) model and a statistical-deterministic method to downscale

TCs using environmental conditions obtained from the Geophysical Fluid Dynamics Laboratory (GFDL)High-Resolution

Forecast-Oriented LowOceanResolution (HiFLOR)model, under the representative concentration pathway 4.5 (RCP4.5)

emissions scenario for the North Atlantic Ocean basin. The downscaled TCs for the historical climate (1986–2005) are

compared with those in the middle (2016–35) and late twenty-first century (2081–2100). The downscaled TCs are also

comparedwith TCs explicitly simulated inHiFLOR.We show that, while significantlymore storms are detected inHiFLOR

toward the end of the twenty-first century, the statistical-deterministic model projects a moderate increase in TC frequency

and PepC projects almost no increase in TC frequency. The changes in storm frequency in all three datasets are not

significant in the mid-twenty-first century. All three project that storms will become more intense and the fraction of

major hurricanes and category-5 storms will significantly increase in the future climates. However, HiFLOR projects the

largest increase in intensity, and PepC projects the least. The results indicate that HiFLOR’s TC projection is more

sensitive to climate change effects and that statistical models are less sensitive. Nevertheless, in all three datasets, storm

intensification and frequency increase lead to relatively small changes in TC threat as measured by the return level of

landfall intensity under the projected climate condition.

SIGNIFICANCE STATEMENT: The study provides the first comparison among TC climatology projections based on

statistical, statistical-deterministic, and dynamic models driven by the same environmental conditions. Under the

projected climate for the RCP4.5 emissions scenario for North Atlantic, all three models project TC intensity to sig-

nificantly increase, with the dynamic model HiFLOR projecting the largest increase in intensity. While HiFLOR

projects a significant increase in TC frequency toward the end of the twenty-first century, the statistical-deterministic

model projects a moderate increase in TC frequency, and the statistical model projects almost no increase in TC fre-

quency. In all three datasets, storm intensification and frequency increase lead to relatively small changes in TC threat as

measured by the return level of landfall intensity under the projected climate condition.
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1. Introduction

Tropical cyclones (TCs) are among the most destructive

natural hazards on Earth, and they have caused great econom-

ical and societal losses. Studies have shown that TCsmay induce

more damage under the impact of anthropogenic global warm-

ing (e.g., Mendelsohn et al. 2012). Although many studies have

investigated how TCs will change in a changing climate, great

uncertainties exist. The vast majority of published studies have

suggested a decline in the global frequency of TCs with warming

(e.g., IPCC 2013; Knutson et al. 2010;Walsh et al. 2016; Knutson

et al. 2020), but a few others suggest an increase in TC frequency

(Emanuel 2013; Bhatia et al. 2018; Fedorov et al. 2018; Vecchi

et al. 2019). In a recent assessment (Knutson et al. 2020) most of

the assessment’s authors conclude that there is a low-to-medium

confidence in a future global reduction of TC frequency, al-

though there is considerable divergence of opinion among the

author team of the assessment. Also, Knutson et al. (2020) find

that there is less agreement among modeling studies on the

projected sign of change inAtlantic basin frequency than for the

case for the global projections, although a clear majority of

studies project a decrease for the Atlantic basin. Contrary to the

divergent projections in TC frequency, a consensus has emerged

about increased TC intensity as well as increased TC-induced

rainfall rates (Knutson et al. 2020, 2013; Scoccimarro et al. 2014;

Villarini and Vecchi 2012; Liu et al. 2019; Stansfield et al. 2020).

Other storm-related hazards are also shown to become exacer-

bated under climate change. For example, Marsooli et al. (2019)

suggest that hurricane flood hazards along the U.S. Atlantic and

Gulf coasts are likely to significantly increase, due to storm
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changes as well as sea level rise. However, while there is high

confidence that sea level rise will add to storm inundation levels,

the extent to which TC intensity, rainfall, and storm-induced

surge will increase remains quite uncertain (e.g., Knutson et al.

2020; Emanuel 2017; Marsooli et al. 2019; Garner et al. 2017).

Improved assessment of climate change effects on TC and TC-

related hazards continues to be of great importance for both

scientific understanding and climate adaptation practice.

Three main modeling approaches are used to investigate the

response of TC climatology to climate change: general circu-

lation models (GCMs), dynamic downscaling, and synthetic

downscaling. The previous generation of global climatemodels

is widely used for global projections; however, these models

cannot directly simulate intense TCs due to their relatively low

resolution (Davis 2018). The dynamic downscaling techniques

that are usually paired with these low-resolution GCMs are

alternative approaches to better resolve TCs. Pioneered by

Knutson et al. (1998) and Knutson and Tuleya (2004), dynamic

downscaling resolves the TC structure with an embedded

higher-resolution regional model, which inherits the environ-

mental conditions from GCMs (Knutson et al. 2013, 2015).

Although effective in resolving individual storms, dynamic

downscaling methods are still computationally expensive and

thus not ideal for TC risk assessment studies, where large

numbers of storms (;104) are often needed to evaluate the risk

posed to a specific region (e.g., Lin and Emanuel 2016).

Recently a few GCMs have been able to explicitly simulate

intense TCs. This eliminates the need for a separate dynamical

downscaling step for the GCMs in climate change experiments

(Wehner et al. 2014). TheseGCMshave grid spacings of 28 kmor

finer and can explicitly represent category-4 and category-5 TCs

[e.g., the Centro Euro-Mediterraneo sui Cambiamenti Climatici

Climate Model (CMCC-CM2-VHR) developed by Scoccimarro

et al. (2017) and the Community Earth System Model (CESM)

developed by Small et al. (2014)]. In particular, the Geophysical

Fluid Dynamics Laboratory (GFDL) High-Resolution Forecast-

Oriented Low Ocean Resolution (HiFLOR), which is a high-

resolution atmosphere–landmodel (0.258 3 0.258) coupledwith a
low-resolution ocean–sea ice model (18 3 18; Murakami et al.

2015), can reproducemany features of TC climatology, including

spatial distribution and intensity distribution, with good fidelity in

comparisonwith observations (Murakami et al. 2015; Zhang et al.

2016). Previous studies using HiFLOR projections identify an

increase in the TC intensification rate and a higher chance of TC

rapid intensification (RI) by the end of the twenty-first century

(Bhatia et al. 2018), as well as an increase in global TC frequency

and in the frequency of the most intense (categories 3–5) TCs in

response to increasing greenhouse gases (Bhatia et al. 2018;

Vecchi et al. 2019). Not all models with grid spacing of 28 km or

finer are able to simulate very intense (category 4 or 5) TCs (e.g.,

Yamada et al. 2017; Manganello et al. 2014; Knutson et al. 2008),

as this capability appears to depend onbothmodel resolution and

details of model physics.

Synthetic downscaling methods, which are now commonly

used for climate–TC risk studies, generate large numbers of

synthetic TCs at the basin scale based on comprehensive cli-

mate conditions from reanalysis data or low-resolution GCM

simulations. The pioneer of this family of methods is the

statistical-deterministic method developed by Emanuel et al.

(2008). This method applies a random seeding technique to ini-

tiate the storm, a beta and advection model based on synthetic

local winds to propagate the storm, and a deterministic intensity

model [CoupledHurricane Intensity Prediction System (CHIPS);

Emanuel and Nolan 2004] to estimate the storm intensity based

on the storm environment along the track. This method has been

applied to study TC properties under various climate conditions.

In particular, Emanuel (2013) applies the method to downscale

six CMIP5 climate projections and projects an increase in TC

frequency during the twenty-first century. The method has also

been widely applied to assess TC wind (Yeo et al. 2014), rainfall

(Emanuel 2017), and storm surge (Marsooli et al. 2019) hazards,

as well as TC economic losses (Mendelsohn et al. 2012), under

current and future projected climate conditions.

Similar to Emanuel et al. (2008), the model developed by Lee

et al. (2018) can also generate synthetic TCs for given climate

conditions, but it is purely statistical. This model has a genesis

component based on Poisson regression (Tippett et al. 2011). Its

track component is based on a revised beta and advectionmodel

with the beta drift term dependent on the storm location, and its

intensity component is based on multiple linear regression on

key environmental parameters plus an autoregressive stochastic

error term (Lee et al. 2015, 2016). Diverging TC frequency

trends are projected using this method to downscale five CMIP5

climate projections, where the storm frequency will increase or

decrease depending on the selection of the moisture variable

(relative humidity or saturation deficit) in its genesis component

(Lee et al. 2020).

Recently, a new probabilistic TC model, the Princeton

Environment-Dependent Probabilistic Tropical Cyclone model

(PepC), has been developed by Jing and Lin (2020). Aimed to

improve on the work of Lee et al. (2018), PepC performs the

Poisson regression on environment-clustering grids (rather

than regular grids) to better capture the spatial-temporal

variation of the storm genesis. PepC applies an analog-wind

track model where storm tracks are determined based on

similar historical track patterns in addition to local in situ wind,

which allows the model to better capture intrinsic features such

as recurving storm tracks at high latitudes. It models the evolu-

tion of a storm’s intensity as a Markov process to better capture

the nonlinear/nonhomogeneous response of TC intensification

to the environmental change along the storm track. As a result,

although most statistical TC intensity models have only limited

capacity to simulate extreme TCs, PepC can simulate a realistic

fraction of RI storms due to its ‘‘lock-in’’ mechanism, which

supports continuous rapid intensification once the storm enters

the extreme state of intensification when the environment is

favorable. The capacity to simulate extreme TCs is essen-

tial, especially for climate change studies where a number of

modeling studies suggest that higher-intensity TCs are more

likely to increase in frequency than lower-intensity TCs

under global warming (Knutson et al. 2020).

While widely used in climatology modeling and risk assess-

ment, the synthetic downscaling methods described above

have not been compared in terms of their TC projections

under climate change scenarios. These synthetic downscal-

ing methods are fully (Lee et al. 2018; Jing and Lin 2020) or
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partially (Emanuel et al. 2008) statistical. It is important to

compare their TC climatology projections with those based on

full dynamic modeling (Emanuel et al. 2010). Also, most ex-

isting TC projections were driven by varying environmental

conditions (generated from different climate models and/or for

different emissions scenarios; Knutson et al. 2020); compari-

sons among TC projections that are driven by the same envi-

ronmental condition are limited. By holding the environmental

condition fixed across the methods, any differences in response

are due to factors other than differences in the large-scale TC

environment as simulated by climate models. In addition to their

practical importance, such comparisons may also contribute to

our understanding of how TCs will respond to climate change.

In this study, we apply both the PepC of Jing and Lin (2020)

and the statistical-deterministic model of Emanuel et al. (2008)

to generate large samples of synthetic TCs under HiFLOR

projected climates for the Atlantic basin, where the PepC has

been tested against observations (Jing and Lin 2020). The

synthetic storms downscaled from the HiFLOR climate pro-

jections are compared with storms generated directly in

HiFLOR.We use three HiFLOR experiments to represent the

historical [‘‘control’’ (1986–2005)] and future [‘‘early’’ (2016–

35) and ‘‘late’’ (2081–2100)] climates under the representative

concentration pathway 4.5 (RCP4.5) scenario; these are the

same experiments explored in van der Wiel et al. (2017) and

Bhatia et al. (2018). In addition to examining the discrepancies

in the modeling approaches and results, we investigate simu-

lated TC characteristics under the historical and future cli-

mates to study the climate change effects. The climatology

characteristics we focus on include storm basin–wide annual

frequency, track density, and lifetime maximum intensity, as

well as landfall frequency, intensity, and return periods. We

further discuss the modeling results in comparison with pre-

vious TC projections.

This paper is organized as follows. After this introduction,

section 2 describes the high-resolution GCM applied, HiFLOR;

the two downscaling techniques, those of Emanuel et al. (2008)

and Jing and Lin (2020); and the downscaling experiments.

Section 3 presents simulated results under current and future

climates. Section 4 discusses TC frequency trend and possible

attributions. Section 5 concludes the study.

2. Data, models, and downscaling approaches

In this section, we first describe the HiFLOR model and the

three HiFLOR experiments used in this study. Next, we briefly

describe the two downscaling approaches, those of Emanuel

et al. (2008) and Jing and Lin (2020). The calibration methods

associated with each downscaling approach are also explained.

a. HiFLOR model and experiments

In this study, we use three 70-yr HiFLOR ‘‘time slice’’ climate

experiments (i.e., repeating climatological forcing for each

simulation year, as introduced in van der Wiel et al. 2017) to

represent the effects of climate change. The control experiment

represents the historical climate during the period of 1986–2005,

while two future climate experiments, referred to as the early

and late experiments, project the climate during 2016–35 and

2081–2100, respectively. The experiments are set up with sea

surface temperature (SST) relaxed to climatological SST values.

The prescribed SST target in the control experiment is set as the

monthly varying climatology from the Met Office Hadley

Centre Sea Ice and SST dataset (HadISST1.1; Rayner et al.

2003) over 1986–2005, while the early and late experiments used

the same climatological values of SSTs from the control exper-

iment plus the projected changes in 2016–35 and 2081–2100,

respectively, derived from a multimodel mean of 17 CMIP5

models, based on the RCP4.5 pathway (van Vuuren et al. 2011).

The experiments cannot capture the response of TC activity to

SST changes in the interannual or decadal scales. However, it is

hypothesized that those variations are smaller than the response

of TC activity to climatological changes in SST—a hypothesis

that is supported by fully coupled and nudged-SST experiments

(Vecchi et al. 2019).

TCs in HiFLOR are tracked based on warm-core tempera-

ture, sea level pressure, and 10-m wind. This tracker, developed

by Harris et al. (2016), is applied to 6-hourly instantaneous out-

put from the model using the parameter values of Zhang et al.

(2016), Murakami et al. (2015), Bhatia et al. (2018), and Vecchi

et al. (2019). Specifically, the tracker follows local sea level

pressure minima, and TCs are identified using a wind speed

threshold (17.5m s21) and a warm core threshold of 2Kwithin 18
of the storm center. TCs are required to have a 72-h total de-

tection lifetime with at least 48 cumulative hours with a warm

core and 36 consecutive hours with peak winds exceeding

17.5m s21, and location of TC genesis should be equatorward of

408. HiFLOR TCs are shown to closely resemble the observa-

tional hurricane datasets, including the International Best Track

Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010)

and the advanced Dvorak technique-Hurricane Satellite-B1

(ADT-HURSAT; Kossin et al. 2013), for the North Atlantic

basin, which has the most reliable data quality given its superior

observational network (Kossin et al. 2013; Bhatia et al. 2019).

HiFLORhas been shown to produce skillful seasonal predictions

of regional TC activity and category-4–5 frequency (Murakami

et al. 2016). Besides TC characteristics, HiFLOR also outputs

major environmental parameters including daily temperature,

moisture, pressure, wind, etc., which are used to drive the syn-

thetic downscaling.

b. The statistical-deterministic method of Emanuel
et al. (2008)

This section briefly describes the statistical-deterministic

downscaling method, and we refer readers to Emanuel et al.

(2008) for more details of the model. First, storms are initial-

ized with random seeding in space and time, and each seed is

randomly assigned an initial wind speed that is less than 25 kt

(1 kt ’ 0.51m s21). The random seeding rate is tapered down

near the equator, in proportion to the low-level absolute vor-

ticity, to prevent storm formation close to the equator. Next,

storm movements are determined by a beta and advection

model driven by large-scale background winds synthetically

generated from a global model projection or reanalysis

dataset and beta drift approximated as a function of latitude

(in the updated version of the model used in this study).

Then, the wind field of each storm is predicted using an
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atmosphere–ocean coupled model, CHIPS, which has very

high radial resolution of the critical inner-core region and can

resolve high-intensity storms. This simplified deterministic in-

tensity model is computationally efficient, making it possible to

generate very large numbers of TCs at a low computational

cost. It is noted that the random seeding technique in Emanuel

et al. (2008) does not produce an absolute rate of genesis per unit

time per unit area; therefore, the genesis rate is often calibrated

by setting the annual global or basinwide number of genesis

events under the control climate to the observed genesis rate in

the historical period. The calibration constant obtained from

the control climate is then used as a multiplicative factor

for the future climate experiments. This statistical-deterministic

downscaling method is shown to generate synthetic storms that

are in statistical agreement with observations (Emanuel et al.

2006). There are in total 1151, 1095, and 1049 storms generated

from the statistical-deterministic model under the control, early,

and late experiments for the North Atlantic basin in this study.

c. PepC of Jing and Lin (2020)

The PepCmodel developed in Jing and Lin (2020) is also used

to perform downscaling of HiFLOR under each climate condi-

tion. PepC consists of a clustering-based genesis model, an

analog-wind track model, and a Markov-based intensity model.

The genesis model seeds weak vortices in the basin based on

Poisson regression on the environmental parameters including

potential intensity [PI; derived following Emanuel (1995) and

Bister andEmanuel (1998, 2002)], deep layer vertical wind shear

(SHR), low-level relative vorticity (VO), and saturation deficit

[derived following Emanuel et al. (2008)], over clustering grids

that are determined by the similarity of these local environ-

mental conditions. As compared with Emanuel et al. (2008),

where the genesis seeding does not evolve with climate change,1

the genesis distribution in Jing and Lin (2020) is highly depen-

dent on climate variables. We use saturation deficit as the hu-

midity predictor in this study on climate change impact given

that theoretically saturation deficit better reflects the increase in

the thermodynamic inhibition of TC formation in a warming

climate (Emanuel et al. 2008), although Jing and Lin (2020)

show that using relative humidity fits better statistically with the

observations under the current climate. After initialization, the

seeds are passed to an analog-wind track model, in which a

storm’s movement is determined by both analog factors (from

historical track patterns) and local in situ winds. The wind pre-

dictors are similar to those in the beta and advection model in

Emanuel et al. (2008) and are derived from large-scale global

model or reanalysis wind fields.

The storm’s intensity is determinedby theMarkovenvironment-

dependent hurricane intensity model (MeHiM), which simulates

TC intensity evolution over the ocean as a Markov process (Jing

and Lin 2019). MeHiM considers three unobserved (hidden) dis-

crete states of intensification and associates each state with a

probability distribution of intensity change. The three unobserved

discrete states, referred to as the static, moderate, and extreme

states, represent the storm’s slow, normal, and rapid intensity

changes, respectively. The storm’s transit fromone state to another

is described as aMarkov chain. Both the intensity change and state

transit components of the MeHiM are dependent on environ-

mental variables, including PI, SHR, relative humidity (RH), and

an ocean feedback parameter [incorporating vertical profiles of

oceanic temperature and salinity; derived following Schade and

Emanuel (1999)], in addition to the storm’s last step intensity

change and current intensity. Jing and Lin (2019) show that it is

important to include in MeHiM an ocean feedback parameter to

represent the ocean’s cooling effect, which is often omitted in other

statistical downscaling methods (Murakami et al. 2012; Korty et al.

2017). The ocean feedback parameter, included in the MeHiM

used in this study, is also estimated from HiFLOR. A simple land

model [similar to Kaplan and DeMaria (1995); see more details in

Jing and Lin (2019)] is added to estimate intensity decay as a

function of time when the storm moves over land.

The original PepCmodel in Jing and Lin (2020) is developed

based on observational reanalysis data, and the simulated re-

sults compare well to observations (Jing and Lin 2020). When

applied to downscale climate model projections, however,

PepC may produce biased results due to possible biases in the

climate model projections. To focus on the climate change

effects based on the HiFLOR simulations in this study,

therefore, we ‘‘calibrate’’ PepC by adjusting each of its model

components to capture the HiFLOR climate–TC relationships

in the control experiment. That is, we redevelop each of the

genesis, track, and intensity components of PepC based on

HiFLOR simulated storms and the environment in the control

experiment. Then we apply the fitted model to generate syn-

thetic storms for each of HiFLOR control and future climate

experiments. There are in total 36 232, 39 997, and 41 131

storms generated from PepC under the control, early, and late

experiments for the North Atlantic basin in this study.

3. Results

In this section, we investigate the response of simulated TCs

to climate change in each dataset moving from the control to

the early and late experiments. TheHiFLORmodel-generated

TCs are detected by a strict detection algorithm, as mentioned

above. To be consistent with HiFLOR, we filter the synthetic

TCs generated by downscaling techniques in Emanuel et al.

(2008) and PepC to include only storms that last at least 72 h

and have at least 36 consecutive hours of winds greater than

34 kt. To make it simple, in the following sections, we use the

name HiFLOR to specifically refer to the TCs that are ex-

plicitly simulated in HiFLOR experiments. We denote the TC

dataset downscaled from HiFLOR experiments with the

Emanuel et al. (2008) approach as KE08 and the TC dataset

downscaled with the Jing and Lin (2020) approach as PepC.

The observational TC data in the period of 1986–2005, taken

from the IBTrACSWMOarchive (Knapp et al. 2010), are used

as a reference. The data include 6-hourly latitude and longitude

positions as well as 10-min maximum sustained wind speeds at

10m above the sea surface for each storm. The observational

dataset is denoted simply as IBTrACS. We compare KE08 and

1Aside fromminor changes in seeding rate near the equator that

result from possible changes in the absolute vorticity of the low-

level flow there.
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PepC to HiFLOR to discuss the TC differences between syn-

thetic downscaling and original climatemodel projections under

the same climate environments (HiFLOR control and climate

projections under RCP4.5). We present IBTrACS as only a

reference to possibly detect the effects of biases in the HiFLOR

climate estimation.

a. Annual frequency and genesis distribution

We first examine the annual frequency of Atlantic storms

from HiFLOR, KE08, and PepC. There are on average 9.1

storms per year in HiFLOR under the control experiment,

which is comparable to 10.15 storms per year in IBTrACS.There

are 11.8 and 7.25 storms per year in KE08 and PepC under the

control experiment, respectively. The original genesis frequency

in PepC (9.3) is close to that in HiFLOR, as the genesis com-

ponent in PepC is developed based on HiFLOR genesis under

the control experiment. However, only 78% of the storms de-

velop to meet the storm selection criteria described above. It is

also noted that the storm frequency in KE08 is larger than the

other datasets. The genesis in KE08 is generated through ran-

dom seeding, which is calibrated with the observed global fre-

quency. Here, to focus on the climate change effects, we further

calibrate TC frequency in PepC and KE08 to be consistent with

HiFLOR in the control experiment for theNorthAtlantic basin.

Specifically, we apply amultiplicative factor of 0.77 toKE08 and

of 1.3 to PepC, for both the control experiment and future cli-

mate projections. The resulting estimations of annual frequency

of total storms and major hurricanes (discussed later) for the

three models appear in Fig. 1.

To determine whether the change of storm frequency from the

control to climate change scenarios is statistically significant, we

perform hypothesis testing of equal frequency for each dataset.

The two-sample, unpaired t test (Wilks 2011) is computed for

HiFLOR and KE08, and a p value of 0.05 is set as the threshold

for statistical significance. To adjust for multiple comparisons (we

have 100 realizations of PepC downscaling, and each realization is

compared with HiFLOR for the hypothesis test), the Benjamini

and Yekutieli (2001, 2005) procedure of controlling the false

discovery rate (FDR) of a family of hypothesis tests is performed

for PepC, with the same statistical significance threshold of

p value of 0.05.When the p value is less than the threshold of 0.05,

we reject the null hypothesis and consider the change in TC fre-

quency statistically significant. Statistically significant change in

TC frequency indicates that the change is very likely not induced

by randomness. As shown in Table 1, HiFLOR has a significant

increase of storm frequency in the late experiment relative to the

control experiment (122.4%), while the increase in the early

experiment (18.2%) is not statistically significant. Similar but to a

lesser extent, KE08 has a significant increase in the storm fre-

quency in the late experiment relative to the control experiment

(18.5%); however, KE08 has a nonsignificant decrease in the

early experiment (24.4%). PepC has a nonsignificant decrease

(20.6%) in the storm frequency in the early experiment and a

nonsignificant increase (12.2%) in the late experiment.

In addition to the annual frequency, the spatial distributions

of TC genesis in the datasets under the control experiment are

shown in Fig. 2. When compared with HiFLOR, KE08 shows a

similar genesis pattern; however, the maximum in the main

development region (MDR; 108–208N, 808–208W) is slightly

shifted to the east, and slightly more storms are generated in

the Gulf of Mexico and Caribbean regions. PepC captures

genesis pattern in HiFLOR, although the storms are much less

concentrated in theMDRand spreadmore to themiddle of the

Atlantic. The genesis schemes for KE08 and PepC are quite

different. In KE08, as the storms are randomly seeded every-

where (with the exception of tapering near the equator), the

spatial pattern of genesis indicates that the storm survival rate

in the MDR is much higher than in any other regions.

However, in PepC where storms are initiated based on local

climate conditions, the genesis spatial distribution is deter-

mined by both the initial distribution and survival rate.

Historically, the majority of storms form in the MDR, but

secondary maxima of activity are seen off the U.S. southeast

coast and in the Gulf of Mexico (Fig. 2a). The control simu-

lations capture the maximum in the MDR with the hotspot

shifted to the west of the MDR. However, the simulations do

FIG. 1. Annual frequency of total storms and major hurricanes (wind speed . 95 kt) for

HiFLOR, KE08, and PepC in the control (1986–2005) and climate change experiments (2016–

35 and 2081–2100, the early and late experiments, respectively).
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not produce much concentrated activity along the U.S. coast or

in the Gulf of Mexico, as shown in IBTrACS, probably due to

the bias in the simulated climate environment. The statistical

significance of these differences cannot be easily tested given

the limited sample size in IBTrACS at the local scale. It is

worth mentioning that the spatial distribution of genesis in

KE08 is similar to that in Emanuel et al. (2008) when the

synthetic storms are downscaled from the reanalysis data, in-

dicating that the random seeding technique is relatively stable

and less sensitive to changes and potential biases in the climate

estimation. No significant changes in TC genesis locations are

identified in the future climate projections (figures not shown).

b. Track density and landfall frequency

Figure 3 compares the track density of the datasets for the

control experiment. TC track density is calculated by counting

the number of times per year that TC tracks pass each 58 3 58
grid cell. The track density plot of IBTrACS is also shown as a

reference. Although the track density is highly affected by the

genesis distribution (Fig. 2), the track density in PepC com-

pares closely to that in HiFLOR, as PepC tracks depend on

HiFLOR’s track pattern and environmental wind. Both have a

single maximum in the western North Atlantic around 258N,

708W; both show the typical recurving pattern in tracks, al-

though storms in PepC recurve slightly earlier than those in

HiFLOR. Also, the track distributions in both HiFLOR and

PepC have a tongue extending toward the Gulf of Mexico,

although the tongue in HiFLOR is slightly larger than that in

PepC. The track density of KE08 is quite different from those

of HiFLOR and PepC, although the genesis distribution in

KE08 is similar to that in HiFLOR (Fig. 2). There are many

more storms in KE08 that travel toward Gulf of Mexico, while

many fewer are recurving to high latitudes, which results in a

stronger maximum appearing in the Gulf of Mexico relative to

HiFLOR and PepC. This difference is likely due to the fact that

the track component in Emanuel et al. (2008) depends mainly

on the environmental wind, which is synthetically generated

based on themonthly wind climatology fromHiFLOR, and the

TABLE 1. The percent difference of the number of total storms, major hurricanes, category-4 hurricanes, category-5 hurricanes, and

number of storms that undergo RI in HiFLOR, KE08, and PepC, between the HiFLOR climate change simulations and the HiFLOR

control simulation. For each storm type, the first entry in the table cell is the percent difference between the 2016–35 and 1986–2005

simulations, and the second entry is the percent difference between the 2081–2100 and 1986–2005 simulations. Positive values indicate

percent increases in the climate change simulation. Statistically significant changes are in boldface type.

Total storms Major hurricanes Category 4 Category 5 RI storms

Early Late Early Late Early Late Early Late Early Late

HiFLOR 18.2% 122.4% 124.0% 160.4% 130.4% 1103.2% 160.0% 1540.0% 139.6% 176.0%

KE08 24.4% 18.5% 12.2% 137.8% 221.1% 113.3% 1108.3% 1250.0% 211.2% 120.5%

PepC 20.6% 12.2% 12.3% 117.1% 14.2% 129.4% 11.1% 153.6% 11.8% 110.8%

FIG. 2. Comparison of the spatial distribution of genesis in (a) IBTrACS, (b) HiFLOR, (c) KE08 and (d) PepC in

the control experiment. Color indicates the number per year of storms in each 58 3 58 grid box (after calibration)

smoothed with a Gaussian low-pass filter.
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effect of beta drift is approximated as only a simple function of

latitude. Relative to IBTrACS, HiFLOR’s and PepC’s maxima

in western North Atlantic are large and shifted away from the

U.S. southeast coast, whereas for KE08 the track density is

more highly concentrated along a path between the MDR and

the Gulf of Mexico; these modeling errors are induced by a

mixture of uncertainties in the TC models and HiFLOR cli-

mate estimation. It should also be noted that the synthetic

downscaling simulations do not include hybrid storms, which

are present in the observations and possibly also in the

HiFLOR simulations.

We further examine regional annual landfall frequency at

coastal locations along the western North Atlantic coastline.

To help indicate locations, a total of 186 mileposts (MPs) is

defined, following Vickery et al. (2000) and Jing and Lin

(2020), to cover the coastline with 100-km spacing along the

Mexican coastline and 50-km spacing along the U.S. coastline,

as shown in Fig. 4. Here, landfall is defined as the passing of a

storm within 100 km of each milepost. As shown in Fig. 5a for

the control experiment, the simulated annual landfall fre-

quencies of KE08 and PepC are compared with those of

HiFLOR for the mileposts. (Given its limited sample size at

the local scale, IBTrACS is not used for comparison here.) In

general, KE08 has a correlation coefficient of 0.55 with

HiFLOR, as compared with 0.80 of PepC with HiFLOR. PepC

is in good agreement with HiFLOR in terms of variations for

almost all mileposts. However, it shows a slight overestimation

near MP 40–50 but a negative bias to the north of MP 50, likely

due to the fact that storms in PepC tend to recurve earlier

(Fig. 3). KE08 shows larger variations. In all regions south of

MP 100 (west of Florida), KE08 has much higher landfall

frequency than HiFLOR and PepC, while in regions north of

MP 100 the landfall frequency of KE08 drops dramatically and

becomes much lower than that of HiFLOR, close to PepC to

the north of MP 120. These results are also consistent with the

track density plot as shown in Fig. 3, where most storms in

KE08 travel to the Gulf of Mexico.

Figures 5b–d compare the TC annual landfall frequency at

the 186 mileposts in the control and climate change experi-

ments. We find that the climate change effect on landfall fre-

quency is relatively small in comparison with the variation of

the predictions among the models. HiFLOR is the most sen-

sitive to climate change, with some increases shown in the early

experiment for the south of MP100 (south of Florida) and in

the late experiment for the north of MP100, while PepC shows

the least sensitivity with almost no change except for a slight

increase in the late experiment for MP 80–110, which repre-

sents the Florida area. It is interesting to find that even

though a significant increase exists in the frequency of total

TCs in HiFLOR and KE08 (122.4% and18.5%, respectively;

Table 1), changes in their landfall frequency appear to be

smaller.

c. LMI, rapid intensification rate, and landfall intensity

Next, we examine the intensity properties of the simulated

storms. Figure 6a shows the probability density functions

(PDFs) of TC lifetime maximum intensity (LMI) for storms in

HiFLOR, KE08, and PepC in the control experiment. The

LMI distribution of HiFLOR follows a bimodal distribution,

with the first peak located at about 75 kt. In HiFLOR, about

35% of TCs reach major hurricane intensities, and around 1%

grow to a category-5 (LMI . 136 kt) storm. Around 45% of

FIG. 3. Comparison of track density in (a) IBTrACS, (b) HiFLOR, (c) KE08, and (d) PepC under the control

experiment. Track density is calculated as the number of times per year that TC tracks pass into each 58 3 58 grid
box smoothed with a Gaussian low-pass filter.
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HiFLOR storms undergo RI. Relative to HiFLOR, KE08 simu-

lates much weaker storms with the peak appearing at around

70kt. Only 31% of storms undergo RI during their life cycle, and

only 22% of storms reach major hurricane intensity. However,

1%become themost intense category-5 storms, which is similar to

HiFLOR. PepC stands in the middle between HiFLOR and

KE08. It also follows a bimodal distribution, with the first peak,

however, close to that of KE08. Generally speaking, there are

more storms with moderate LMI in PepC than in KE08 and

HiFLOR. Around 28% of PepC storms reach major hurricane

intensity, 33% undergo RI, and 1% grow to category 5.

The LMI of IBTrACS is also shown in Fig. 6a as a reference.

Historically, 30% of storms reachmajor hurricane intensity, about

4% grow to category 5, and around 45% undergo RI. Relative to

observations, there are fewer weak and very strong storms in

HiFLOR(and also in PepC), and theLMIs aremore concentrated

in a narrower range. This inconsistency could be partially induced

by the detection algorithm, as the warm-core requirements and

other components of the detecting procedure in HiFLOR may

have lowered the number of weak TCs, which shifts the first peak

of the LMI distribution to a higher value. It is noted that these

results are very similar to findings in Bhatia et al. (2018), in which a

similar HiFLOR simulated storm dataset is used. All three simu-

lations underestimate the tail of LMI as shown for IBTrACS.

We then examine the PDFs of TC LMI in HiFLOR, KE08

and PepC in the early and late experiments. In all three datasets,

the entire LMI distributions shift to higher intensity values in

climate change experiments. However, HiFLOR has the largest

FIG. 5. Comparison of annual landfall frequency at each of the 186 mileposts (as shown in Fig. 4) along the western

North Atlantic coastline (a) under the control experiment and (b)–(d) for each dataset under the warming climate.

FIG. 4. Illustrations of locations and areas along thewesternNorthAtlantic coastline considered in this study: (a) locations of considered

mileposts (MPs) along the Mexico (every 100 km) and U.S. (every 50 km) coastlines; (b) locations of four regions: the North Atlantic

coastline (green, blue, and red segments shown on the map; all 186 MPs), the northeastern United States from Maine to Virginia (green

segment; MPs 128–186), the southeastern United States from North Carolina to Florida plus the U.S. Gulf Coast (blue segment; MPs 41–

128), and the Gulf Coast of Mexico (red segment; MPs 1–40).
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change while PepC has the least change (Figs. 6b–d). As shown

in Fig. 1 and Table 1, HiFLOR has significantly more major

hurricanes in the early (124%) and late experiments (160.4%)

than in the control experiment. HiFLOR has particularly large

increases in category 4 (1103.2%) and category 5 (1540%) in

the late experiment. These results are consistent with the anal-

ysis in Bhatia et al. (2018) for the North Atlantic basin. To a

lesser extent, KE08 shows significant increases in the major

hurricanes (137.8%) and category-5 storms (1250%) in the late

experiment. Similar to HiFLOR, PepC projects increases in

major hurricanes (117.1%), category-4 storms (129.4%), and

category-5 (153.6%) storms in the late experiment; the changes

are much smaller but still significant.

Because most category-4 and category-5 storms undergo RI

during their life cycles, we further investigate the change in RI

storms. HiFLORhas a significant increase of theRI storms in both

the early (139.6%)and late (176%)experiments.KE08andPepC

have significant increases of the RI storms in only the late experi-

ment (120.5% and 110.8%, respectively). Related to the differ-

ences in the RI rate among the three datasets, there are around

24%, 11%, and 14% category-4 storms and 4%, 5%, and 1%

category-5 storms projected in HiFLOR, KE08, and PepC, re-

spectively, leading to very different tails (LMI.125kt) of the LMI

distributions among the three datasets in the late experiment al-

though these tails are very similar in the control experiment (Fig. 6).

Next, we investigate the probability distribution of the landfall

intensity for the North Atlantic coastline and its divisions in-

cluding the Gulf Coast of Mexico, the U.S. Northeast, and the

U.S. Southeast (Fig. 7, with the definition of regions denoted in

Fig. 4). In this case, TC landfall is defined as crossing the coastline

for each region. In the control experiment, in contrast to the LMI

case, where PepC stands in the middle of HiFLOR and KE08,

PepC has a higher portion of intense landfalling hurricanes,

especially when the landfall intensity is greater than 70 kt.

Landfalling TCs in HiFLOR are weaker than those in PepC,

followed by those in KE08, which have the lowest landfall

intensities, with the peak of the distribution located around

35 kt (although IBTrACS has an even lower peak around

25 kt). The distributions of landfall intensity in the three

subregions have similar patterns to those for the entire North

Atlantic coastline, except that in the U.S. Northeast the distri-

bution of KE08 is more significantly left-shifted than in either

PepC and HiFLOR. This discrepancy can be explained by the

difference in the TC tracks, as shown in Fig. 3. As most storms in

KE08 travel to the Gulf of Mexico, fewer storms grow, intensify,

and eventually make landfall in the northeastern region. In

comparison with IBTrACS, the simulations, especially HiFLOR

and PepC, have higher landfall intensity except at the very end of

the tail, which is consistent with the LMI properties (Fig. 6a).

There is not much change in the landfall intensity when the

climate moves from the control experiment to the early and

late experiments, as shown in Fig. 7. We identify only slight

shifts toward large-intensity values in the northeastern and

southeastern United States in all three datasets. However, all

changes fail the two-sample Kolmogorov-Smirnov test on dif-

ferences in distributions and are hence statistically negligible.

Referring to Table 1 and Fig. 6, storms are projected to become

more intense overall, especially in HiFLOR, but this intensi-

fication does not carry over to landfall at regional or basin scale

in the three simulation datasets.

d. Return period of landfall intensity

Combining the landfall frequency and landfall intensity

distribution, we compute return periods for landfall intensities

FIG. 6. Comparison of PDF of lifetime maximum intensity in (a) the control experiment and (b)–(d) for each

dataset under the warming climate. Raw data are grouped in 5-kt bins and smoothed by a moving average window

with width of 15 kt.
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to describe potential TC threat along the North Atlantic

coastline. The return period for an intensity level is the inverse

of the corresponding annual exceedance probability, which

describes the chance of one or more TCs making landfall with

an intensity greater than the intensity level in any given year

(under a specific climate condition). The annual exceedance

probability is calculated as the product of landfall frequency

and exceedance probability of the landfall intensity. We show

TC landfall intensity as a function of return period for each of

the segments of the North Atlantic coastline (illustrated in

Fig. 4, where TC landfall is defined as crossing the coastline for

each region), for each model and climate condition.

The return period curves of HiFLOR, PepC, and KE08 are

shown in Fig. 8. The return period curves for IBTrACS are also

shown in Fig. 8 as a reference. In the control experiment, for

the North Atlantic coastline, the return period curve in PepC is

the lowest, KE08 is the highest, and HiFLOR stands in the

middle; IBTrACS is covered by the model spread. The return

period curves for the northeastern United States are more

spread out, with KE08 the lowest, HiFLOR the highest, and

PepC in the middle and being closest to IBTrACS. The return

period curves for the Mexico are also spread out, and KE08 is

much higher than HiFLOR and PepC but happens to be the

closest to IBTrACS. In the U.S. Southeast, the three datasets

agree with each other and with IBTrACS, and the return pe-

riod curves almost overlap. As the landfall intensity distribu-

tions for the three datasets are similar for Mexico (Fig. 7a), the

much higher return period curve in KE08 is induced by its

estimated much higher landfall frequency for this region (as

indicated in Figs. 5a and 3). For the Northeast, the much lower

return period curve in KE08 is induced by its estimated much

lower landfall frequency (see Fig. 5a) and landfall intensity

(Fig. 7a). The estimated lower frequency in PepC than in

HiFLOR for the Northeast (see Fig. 5a) also induces a lower

return period curve for the region. The return periods for the

North Atlantic coastline seem to be largely determined by

those for Mexico and the southeastern United States.

Next, we compute return period curves for HiFLOR,

KE08, and PepC in the early and late experiments to in-

vestigate their responses to climate change. Overall, there

is little systematic change of the landfall intensity return

period under future climates relative to the current cli-

mate, especially at the basin scale. The relatively un-

changed return periods result from the nonsignificant

change in landfall intensity (Fig. 7) and in landfall fre-

quency for most cases. The change in landfall frequency is

FIG. 7. PDF of TC landfall intensity in the control, early, and late experiments. The four panels on the top left are comparisons of

historical records (IBTrACS) with HiFLOR, KE08, and PepC in the control experiment. Other panels show climate effects on landfall

intensity for HiFLOR, KE08, and PepC. Four regions defined in Fig. 4 are examined. In PepC, the shadings show 25th–75th percentile

uncertainty bounds estimated from 100 realizations. TC landfall is defined as crossing the coastline for each region.

9358 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/22 06:28 PM UTC



statistically significant only in HiFLOR’s late experiment

for the northeastern United States, based on the two-

sample, unpaired t test (Wilks 2011). Thus, for HiFLOR

(Fig. 8b), there is a moderate increase in the return level

for the northeastern United States, due to the statistically

significant increase in landfall frequency (see also Fig. 5b)

and a nonsignificant increase in landfall intensity (Fig. 7b),

and a slight decrease for Mexico in the future climate. As a

result, there is little net change in the return level for

the entire North Atlantic coastline. Nevertheless, the

HiFLOR projection indicates that, although the north-

eastern region has the smallest TC threat, with the 100-yr

landfall intensity about 100 kt under the control climate, it

is the region where the TC threat may grow the fastest as

the climate warms. The 100-yr return level is projected to

be as high as 110 kt in the early experiment and 125 kt in

the late experiment. In contrast, in Mexico the TC threat

may even slightly decrease under a warmer climate. For

KE08, the return level increases only slightly for the North

Atlantic coastline, the southeastern United States, and

Mexico, with almost no change for the northeastern United

States (Fig. 8c). In contrast to HiFLOR and KE08, PepC

has a slight increase in landfall intensity level for the early

experiment but almost no change for the late experiment,

relative to the control experiment (Fig. 8d). Overall, all three

models predict the climate change effect on the landfall intensity

return level/TC threat to be quite small and much smaller than

the variation of the predictions among the models (Fig. 8a).

4. Discussion

Onemain objective of this study is to evaluate a new statistical

synthetic downscaling approach to estimating how tropical cy-

clone activity will respond to climate change. Prior to this study,

statistical models (describing storm genesis, track, and intensity)

are usually not applied in TC climate change studies since most

statistical models are climate-invariant. One exception is Lee

et al. (2020), who investigate TC activity by downscaling CMIP5

climate models using the statistical model CHAZ (Lee et al.

2018). They show that the projected future TC activity is very

sensitive to the choice of humidity variable (saturation deficit or

relative humidity) used in the genesis component. This choice

will lead to divergent conclusions about annual TC frequency

trends and thus large uncertainty in regional and local storm

hazard assessment. This finding reminds us that one must be

cautious when using statistical methods to project TC activity

under future climate conditions. Here, for the first time, we in-

vestigate statistical projections of future TC activity in compar-

ison with dynamic and statistical-deterministic projections, all

for the same environmental condition changes.

In comparing storms generated and downscaled fromHiFLOR

projected climate (RCP4.5), we find that HiFLOR, KE08, and

FIG. 8. As in Fig. 7, but for the return period of TC landfall intensity.
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PepC show similarities in responding to climate change in that

storms will become more intense. Significant increases in the

frequency of major hurricanes and category-5 hurricanes appear

in all three datasets by the end of the twenty-first century, when

the fractions of RI storms are also projected to increase signifi-

cantly. For total storm frequency, HiFLOR suggests a large in-

crease, KE08 suggests a moderate (but still significant) increase,

and PepC suggests no significant change by the end of the twenty-

first century. In general, the changes in PepC are usually smaller

than those in HiFLOR and KE08, which means PepC is less

sensitive to climate change effects. These results might indicate

more generally that statistical methods are less sensitive than

dynamic models to the changes in the climate environment that

general circulation models project.

To further explore the causes of the uncertainties in the

projections, we compare results in this study with those in the

existing literature. The changes in the overall fraction of

category-4–5 hurricanes in HiFLOR (1126%) and to a lesser

extent in KE08 (146%) and PepC (145%) are significantly

larger than the median projected global change of 113% in

previous studies (Knutson et al. 2020), although the studies

assessed in the Knutson et al. (2020) include a number of

lower-resolution models, where in some cases intense TC

activity is inferred statistically rather than through direct

simulation. Larger uncertainty exists in the projection of total

storm frequency and of category-4–5 frequency. The Knutson

et al. (2020) assessment suggests that the majority of dy-

namical modeling studies project a decline in the number of

Atlantic TCs with global warming, and the model results

are relatively split on whether Atlantic category-4–5 TC

frequency will increase or decrease (with the caveat of the

inclusion of statistically derived results from relatively low-

resolution models). Analyzing eight CMIP5 climate model

projections under theRCP 8.5 scenario, Tory et al. (2013) infer a

mixture of TC frequency increases and decreases for the

Atlantic basin, based on an empirical TC detection method.

Their findings are more mixed than those of Knutson et al.

(2013), who find a clear preference for a projected overall de-

crease in Atlantic basin TC frequency (significant for 7 of 10

individual CMIP3 models) along with a weak tendency (8 of 12

models) for an increase in the frequency of intense (category 4–

5) TCs, using a variety of CMIP3 and CMIP5model scenarios as

the boundary forcing. [Note that the range of projections found

by Knutson et al. (2013) and Tory et al. (2013) in downscaling

different CMIP3 models [e.g., as shown in Table 5 of Knutson

et al. (2013)] demonstrates that a wide range of projections can

be driven not only by different downscaling techniques, as il-

lustrated in the present study, but also by different climate

models that supply information to the downscaling framework].

InKnutson et al. (2015), which is based on downscaling TC cases

from the GFDL HiRAM global model under the RCP4.5

emission scenario, only inconclusive (nonsignificant) decreases

in total TC frequency and nonsignificant increases in category-4–

5 frequency in theNorthAtlantic basin are projected (Table 3 of

Knutson et al. (2015). Other recent studies suggest no change or

even an increase in TC frequency under the future climate.

Applying a statistical downscaling scheme to 17 CMIP5 models,

Villarini and Vecchi (2012) project that Atlantic TC frequency

will increase in the first half of the twenty-first century, while no

significant change is projected over the entire century. Their

method uses only SST as the statistical predictor and does not

explicitly account for changes in humidity or wind shear.

Downscaling six CMIP5 models under the RCP8.5 emissions

scenario using the statistical-deterministic downscaling method

of Emanuel et al. (2008), Emanuel (2013) projects a consis-

tent increase in Atlantic TC frequency and category-4–5

frequency over the twenty-first century [Atlantic basin results

from Emanuel (2013) are reported in supplemental material

of Knutson et al. (2020)].

A recent study explores the responses of TCs to climate

change using coupled GCMs with increasingly fine resolution.

While the global TC frequency decreases substantially in the

50-km model, the 25-km HiFLOR (the same model but with

different experimental designs) shows no significant change, and

when model biases are corrected, HiFLOR shows a significant

increase in TC frequency (Vecchi et al. 2019). Nevertheless, in

comparison with previous studies, the increase of 22% in TC

frequency for the North Atlantic basin in HiFLOR is excep-

tionally large, especially under the RCP4.5 emission scenario.

Although the difference in the climate conditions may have

contributed to the difference in the stormprojection inHiFLOR,

the main reason may be that storm activity in HiFLOR is more

sensitive to climate change effects, as the increase in storm fre-

quency of 8.5% in KE08 and no significant change in PepC

(12.2%), given the same HiFLOR climate, are closer to the

estimations in previous studies.

Multiple possible mechanisms have been discussed to ex-

plain the increment or reduction in TC frequency. Possible

hypothesized mechanisms for the reduction in TC frequency

include a slowing of the large-scale tropical circulation due to

increasing static stability (Sugi et al. 2002; Held and Zhao 2011;

Bengtsson et al. 2007) or increases in the saturation deficit

between the surface and middle troposphere (Emanuel et al.

2008). On the other hand, possible mechanisms for increasing

TC frequency include increases in potential intensity, and, in

particular, increases in the area over which the PI is sufficiently

large to sustain genesis, due to the reduction in the meridional

temperature gradient and relative warming at the poleward

boundaries of the historical zones of TC activity (Fedorov et al.

2018; Viale and Merlis 2017).

While the large-scale thermodynamic environment is no

doubt an important factor modulating the rate of TC genesis, it

is well known that real TCs often, and perhaps always, develop

from pre-existing disturbances of independent physical origin.

Experiments with high-resolutionGCMs (Li et al. 2010; Vecchi

et al. 2019; Sugi et al. 2020; Hsieh et al. 2020; Vidale et al. 2021;

Yamada et al. 2021) have been used to explore such pre-existing

disturbances and relate their frequency to the frequency of TCs.

When these disturbances meet certain requirements, they are

labeled ‘‘seeds,’’ and their frequency is often the dominant

control on overall TC frequency in comparison with the

probability of their transitioning to TCs. For example, in Hsieh

et al. (2020), seeds are defined as disturbances detected by a

tracking algorithm whose relative vorticity lies in the interval

of 4 3 1024 s21 and 1023 s21. Weaker perturbations are iden-

tified as cloud clusters. However, it should be noted that, due to
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the spatial scale of TC seeds and the role of atmospheric

convection in them, their simulation and sensitivity in GCMs

may show model dependence arising from the effective res-

olution of a model’s dynamical core and the model’s physical

parameterizations (Zhao et al. 2012). Developed based on

HiFLOR TCs at the genesis stage using regression-based

techniques, PepC does not explicitly model TC seeds or their

transition to TCs. KE08 use a seeding rate that varies only

with the absolute vorticity near the equator, but their seeds

are much weaker than the seeds defined by Hsieh et al. (2020)

and the transition of the KE08 seeds to an intensity com-

mensurate with the Hsieh et al. (2020) seeds displays con-

siderable climate sensitivity. Research on the evolution of

weak disturbances into TCs is an increasingly active endeavor

in tropical meteorology.

5. Conclusions

In this study, we investigated the responses of TCs to climate

change by comparing projected TCs downscaled from a high-

resolution global climate model using statistical and statistical-

deterministicmethods with those directly resolved in the climate

model under the historical and future projected climates. The

HiFLOR model is used to produce the climate projections,

which drive the two downscaling frameworks. HiFLOR is able

to explicitly simulate TCs that are realistic in a number of as-

pects, and theseHiFLOR-generatedTCs are used as a reference

in the comparisons. Three 70-yr HiFLOR experiments, which

represent the climate during the period of 1986–2005, 2016–35,

and 2081–2100 under the RCP4.5 scenario, were performed to

explore the effects of climate change. The statistical-deterministic

downscaling method, KE08, of Emanuel et al. (2008) and the

statistical downscalingmethod, PepC, of Jing andLin (2020),were

used to generate large samples of synthetic TCs for the North

Atlantic basin, given the environmental climate change conditions

as obtained from the HiFLOR projections.

We find that HiFLOR and, to lesser extent, KE08 simulate

significantly more Atlantic TCs by the end of the twenty-first

century, although the increases are not significant in the mid-

twenty-first century, while PepC shows no significant change in

TC frequency over the century. All simulationmethods project

significant increases in the frequency of both major hurricanes

and category-5 hurricanes by the end of the twenty-first cen-

tury. The fraction of RI storms is also projected to increase

significantly, which is consistent with previous studies (e.g.,

Emanuel 2017; Bhatia et al. 2018). The projected significant

increase of RI storms is also consistent with the physical un-

derstanding that the rate of intensification scales with the

square of the potential intensity (Emanuel 2012). The increase

in the fraction of the most intense storms leads to a shift to

higher intensity values of the entire LMI distribution under the

warmer climate, with HiFLOR responding the most to climate

change and PepC the least. This difference in the extent of

responses of HiFLOR, KE08, and PepC results in very dif-

ferent tails of the LMI distributions under the future climate

although the tails for the three datasets are very similar under

the control climate. Nevertheless, the overall increases in TC

frequency and especially intensity under the warmer climate

do not carry over to landfalling TCs in all of the simulations.

The return levels of landfall intensity for the North Atlantic

coastline remain nearly the same for future projected condi-

tions as for the control condition. However, minor changes

exist at regional scales. HiFLOR projects that the northeastern

United States, which has the lowest TC threat, may see a mod-

erate growth of the TC threat as the climate gets warmer. In

contrast, in Mexico, the landfalling TC threat may even slightly

decrease under a warmer climate according to HiFLOR pro-

jections. These regional trends do not exist in KE08 or PepC.

In this study, we examined the performance of a newly de-

veloped statistical downscaling approach, PepC, to TC climate

change studies, in comparison with dynamic (HiFLOR) and

statistical-deterministic downscaling (KE08) methods. We com-

pare findings in this study with previous projections and point out

that the large increment of TC frequency in HiFLOR (122%)

under the RCP4.5 emission scenario is barely seen in previous

studies based on CMIP3 and CMIP5 models. The moderate in-

crease in KE08 (18.5%) and the insignificant change in PepC

(12.2%) are closer to previous projections, although those pro-

jections were based in many cases on lower-resolution models

thanHiFLOR. The increase in the overall fraction of category-4–

5 hurricanes projected by HiFLOR (1126%) is also much larger

than that projected by KE08 (146%), PepC (145%), and pre-

vious studies. As all three simulations are based on the same

climate projection, the results indicate that the storm activity in

HiFLOR ismore sensitive to climate change effects.On the other

hand, statistical downscaling models may be less sensitive to cli-

mate change effects. More work is needed to further investigate

potentials and limitations in TC statistical downscaling methods;

possible future work includes a downscaling study for other state-

of-the-art climate models, such as CMIP6 climate models. This

study focuses on the uncertainty in TC modeling; for future TC

projections and applications in decision making, the uncertainty

in future climate projections of large-scale environmental con-

ditions (e.g., based on analyzing a range of CMIP6 models under

various emission scenarios) should also be considered.
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